
Internally coupled metamaterial beam for simultaneous vibration
suppression and low frequency energy harvesting

Guobiao Hu,1 Lihua Tang,1,a) and Raj Das2

1Department of Mechanical Engineering, University of Auckland, 20 Symonds Street, Auckland 1010,
New Zealand
2School of Engineering, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia

(Received 3 November 2017; accepted 17 January 2018; published online 6 February 2018)

The paper proposes a modified metamaterial beam for simultaneous vibration suppression and

energy harvesting. Local resonators in the modified metamaterial beam are alternately coupled, and

each resonator is associated with a piezoelectric element for converting vibrations into electrical

energy. First, the mathematical model of the modified metamaterial beam based piezoelectric energy

harvester (PEH) is developed. The vibration suppression and energy harvesting performances of this

system are analysed and compared with those of a conventional metamaterial beam PEH. The

analytical results predict that not only the energy harvesting performance can be massively

reinforced in the low frequency range, but also the vibration suppression performance can be slightly

enhanced due to the appearance of an additional band gap. Subsequently, two finite element models,

Models A and B, are developed. Model A is expected to be equivalent to the analytical model for

validation and the local oscillators represented by lumped parameters in the analytical model are

modelled by using cantilevers with tip masses. These tip masses are alternately coupled with ideal

springs. The finite element analysis results in terms of both vibration suppression and energy

harvesting show good agreement with the analytical results. Finally, to propose a more practical

design of the internal coupling, Model B is established. Every two neighbouring tip masses are

alternately coupled by using a beam connection. The finite element analysis results show that Model

B is not completely equivalent to the proposed analytical model: no significant enhancement in

terms of energy harvesting but a remarkably enhanced vibration suppression performance.

Published by AIP Publishing. https://doi.org/10.1063/1.5011999

I. INTRODUCTION

Elastic metamaterials (EMMs) with artificially engi-

neered microstructures possess several unique properties

including negative refraction,1,2 negative modulus,3,4 negative

effective density,5,6 to name a few. Researchers have been

attracted to explore the applications of EMMs for various

kinds of applications,7–11 one of which is low frequency

vibration suppression.12–15 The ability of EMMs for vibration

suppression arises from their band gap phenomenon due to

the out-of-phase motion of the introduced microstructures

(local resonators) when vibrations occur near resonance.16,17

Yao et al.5 performed an experimental study to reveal this

mechanism. Huang et al.6 presented an analytical study of

one dimensional elastic metamaterials based on spring-mass

lumped parameter modelling. Liu et al.13 proposed a method

based on the Euler-Bernoulli beam theory in conjunction with

the transfer matrix method (TMM) for calculating the band

structures of metamaterial beams. Based on the Timoshenko

beam theory in conjunction with the transfer matrix method

(TMM), Yu et al.18 proposed a similar method for calculating

the band structures of metamaterial beams. Zhu et al.12

applied the Timoshenko beam theory and calculated the band

structure of a modified metamaterial beam with multiple

embedded local resonators. Pai19 adopted another method

based on the combination of the beam theory and the Bloch’s

theorem to derive the dispersion relation of a metamaterial

beam. Recently, Sugino et al.20 proposed a novel method for

estimating the band gaps of metamaterial beams based on

modal analysis in conjunction with the assumption of infinite

number of resonators.

In addition to the methodology development for band

structure analysis, other researchers attempted to explore the

ways to widen the band gap of acoustic metamaterials or

make it tuneable for achieving modified metamaterials with

enhanced vibration suppression performance.21 Huang and

Sun.22 introduced a multiple resonators embedded metamate-

rial, whose each cell contains three masses connected in series

by linear springs. This proposed modified metamaterial can

provide multiple band gaps for vibration suppression. Chen

et al.23 proposed a band gap tunable metamaterial, whereby

the tunability was realized through connecting the inner mass

to the outer mass in each cell by a piezoelectric element that

is shunted to a negative capacitance circuit. A recent work by

Hu et al.24 was also based on a similar idea and presented a

piezoelectric tunable metamaterial. The analytical model

developed in that study was a finite long model including

damping. In addition, their study proposed to utilize the

embedded piezoelectric element for energy harvesting. Hu

et al.25 modified the conventional metamaterial (classic mass-

in-mass spring system5) through introducing internal coupling

between local resonators. The internally coupled metamateriala)Author to whom correspondence should be addressed: l.tang@auckland.ac.nz
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can provide three band gaps for broadband vibration suppres-

sion. Zhou et al.26 established a metamaterial with a diatomic

crystal lattice. They employed and compared several model-

ling methods for calculating the band structure. Overall, mul-

tiple band gaps were observed in the modified metamaterial.

In recent years, the applications of metamaterials have

been extended into the field of energy harvesting.27–29 Shen

et al.10 designed a metamaterial plate consisting of an array

of spiral beams as the conversion medium for energy har-

vesting and claimed that the output power was enhanced at

multiple resonant frequencies in the low frequency range.

Mikoshiba et al.30 proposed an energy harvesting system

with a periodic structure embedded with multiple local reso-

nators made of spring-suspended magnets. As aforemen-

tioned, Hu et al.24 proposed a tunable metamaterial with

embedded piezoelectric elements for achieving simultaneous

energy harvesting and vibration suppression. A more recent

study31 extended their work to a piezoelectric metamaterial

beam through distributed parameter modelling. They investi-

gated this piezoelectric metamaterial beam from both the

vibration suppression and energy harvesting perspectives. A

recent review paper on the topic of metamaterial-inspired

energy harvesting can be referred to Ref. 32.

On the basis of the models presented in Refs. 25 and 31,

this paper proposes an internally coupled metamaterial beam

embedded with piezoelectric elements. Such a beam based on

the distributed parameter model represents a more practical

structure of internally coupled metamaterials. It is explored in

this paper that the phenomenon of the appearance of the addi-

tional band gap due to the introduction of the internal cou-

pling discovered in Ref. 25 still occurs in the distributed

parameter model. As the vibration suppression performance

of metamaterials is determined by band gaps, the occurrence

of the additional band gap can enhance the vibration suppres-

sion ability. In addition, the idea of the piezoelectric metama-

terial beam introduced in Ref. 31 for improved simultaneous

vibration suppression and energy harvesting is extended in

this proposed model. It will be shown that the introduction

of the internal coupling could benefit the energy harvesting

performance of the proposed system as well. First, based on

the Euler-Bernoulli beam theory and the transfer matrix

method, the infinite long model of the proposed modified

metamaterial beam is developed and its band structure is cal-

culated analytically. The finite long model of the proposed

modified metamaterial beam is then also developed and its

transmittance is calculated. Predictions of band gaps from

the band structure and the transmittance are compared.

Subsequently, under weak coupling conditions, by embedding

piezoelectric elements with local resonators, the energy

harvesting performance of the system is analytically investi-

gated. In addition to the analytical study, two types of finite

element (FE) models (termed models A and B) are estab-

lished. In Model A, each local oscillator represented by

lumped parameters in the analytical model is modelled by

using a pair of cantilever beams with tip masses. These tip

masses are alternately coupled with ideal springs. In Model B,

the ideal spring connection is replaced by a beam connection,

which is analogous to a more practical implementation. Both

vibration suppression and energy harvesting performances of

these two models are analysed and compared. The differences

between the FE models and analytical models are discussed.

II. THEORETICAL ANALYSIS

A. Conventional metamaterial beam

This section briefly reviews the methodologies for cal-

culating the band gaps of conventional metamaterials beams.

Figure 1(a) shows the infinite long model of a conventional

metamaterial beam. Uniform local resonators are periodi-

cally attached onto the host plain beam at a constant spacing

of d. Each resonator is consisted of a mass m and a linear

spring with a constant stiffness of k. Based on the Euler-

Bernoulli beam theory and the transfer matrix method, the

band structure of this system can be derived.12,13,18 Figure

1(b) shows the finite long model of the conventional meta-

material beam. A recent study by Hu et al.31 presents an ana-

lytical study of this kind of system. Adopting the methods

proposed by the existing literature, Fig. 2 shows the band

structure of an infinite model and the transmittance of a finite

long model. The system parameters used in the calculation

are listed in Table I.

The band gap signifies a frequency range within which

there is no real solution for wave number. From another

viewpoint, this implies that for a given wave number, only

real solutions of frequency represent the waves which could

propagate within the metamaterial. Otherwise, complex solu-

tions represent evanescent waves whose energy quickly

decreases with the distance. In the band structure [Fig. 2(a)],

the frequency range 89.8–122.1 Hz (blue shaded area)

denotes the band gap. The band gap correspondingly exhibits

as a valley in the transmittance [Fig. 2(b)]. This is more

physically understandable, as in the band gap, vibrations are

strongly suppressed, thus resulting in an extremely low trans-

mittance. The blue shaded area in the transmittance marks

the band gap range obtained from the band structure. It can

be noted that predictions of the band gap from the band

structure and transmittance are in good agreement.

(a) (b)

FIG. 1. Conventional metamaterial beam: (a) infinite long model and (b) finite long model.
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B. Vibration suppression of the modified metamaterial
beam

This section describes the structure of the modified

metamaterial beam and investigates its vibration suppression

performance through the band structure of an infinite long

model and the transmittance of a finite long model.

1. Band structure

Figure 3 shows the infinite long model of the proposed

internally coupled metamaterial beam. Uniform local reso-

nators are periodically attached onto the host plain beam at

a constant spacing of d. Each resonator is consisted of a

mass m and a linear spring of stiffness k. Different from the

conventional metamaterial beam, in the modified one, every

two neighbouring local resonators form a new distinct

group and interact with each other through a linear coupling

spring kc.

According to the Euler-Bernoulli beam theory, the gov-

erning equation of the beam can be written as

EI
@4w x; tð Þ
@x4

þ qAcs
@2w x; tð Þ
@t2

¼ 0; (1)

where EI, q, and Acs are the bending stiffness, density, and

cross-section area of the beam, respectively; w(x, t) is the

deflection at position x. The solution of w(x, t) is assumed

to be in the form of wðx; tÞ ¼ WðxÞeixt, where WðxÞ is the

deflection amplitude of the beam and x is the circular fre-

quency. Since only the steady-state response is of interest,

the time factor eixt, which applies to all the field variables,

can be disregarded. For an Euler-Bernoulli beam, the gen-

eral solution of the deflection amplitude of the beam

WðxÞ is

W xð Þ ¼ A cos bxð Þ þ B sin bxð Þ þ Ccosh bxð Þ þ Dsinh bxð Þ;
(2)

where b4 ¼ qAcsx2

EI . As each cell is consisted of two subsec-

tions, therefore, the deflection amplitudes of the left-hand-

side (lhs) and right-hand-side (rhs) subsections of the jth cell

of the beam are

Wl
j xð Þ ¼

Al
j cos b x� j2dð Þð Þ þ Bl

j sin b x� j2dð Þð Þ
þCl

jcosh b x� j2dð Þð Þ þ Dl
jsinh b x� j2dð Þð Þ

" #

Wr
j xð Þ ¼

Ar
j cos b x� j2d � dð Þð Þ þ Br

j sin b x� j2d � dð Þð Þ
þCr

j cosh b x� j2d � dð Þð Þ þ Dr
j sinh b x� j2d � dð Þð Þ

" #
:

8>>>>><
>>>>>:

(3)

The equations of motion of the left and right resonators in the jth cell are

m€ul
j tð Þ þ kc ul

j tð Þ � ur
j tð Þ

� �
þ k ul

j tð Þ � wl
j j2d; tð Þ

� �
¼ 0

m€ur
j tð Þ þ kc ur

j tð Þ � ul
j tð Þ

� �
þ k ur

j tð Þ � wr
j j2d þ d; tð Þ

� �
¼ 0;

8><
>: (4)

FIG. 2. (a) Band structure and (b) transmittance of the conventional metamaterial beam.

TABLE I. System parameters under investigation.

Parameters Values

Beam cross-section area Acs 0.020� 0.004 m2

Beam mass density q 7860 m

Young’s Modulus E 200� 109 Pa

Periodic constant d 0.075 m

Local resonator mass m 0.0396 kg

Local resonator stiffness k 1.2663� 104 N/m
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where kc is the stiffness of the coupling spring; and ul
j and ur

j

are the absolute displacements of the left and right local res-

onators, respectively. The reaction forces of the left and right

local resonators in the jth cell acting on the plain beam can

be calculated as

Fl
j ¼ k Wl

j j2dð Þ � Ul
j

� �
Fr

j ¼ k Wr
j j2d þ dð Þ � Ur

j

� �
:

8<
: (5)

Solving Eq. (4) to represent the magnitudes of oscilla-

tors Ul
j and Ur

j in terms of Wl
j and Wr

j , and substituting them

into Eq. (5) gives

Fl
j ¼ aWl

j j2dð Þ � bWr
j j2d þ dð Þ

Fr
j ¼ �bWl

j j2dð Þ þ aWr
j j2d þ dð Þ;

(
(6)

where a ¼ kð1� ðkcþk�mx2Þk
ðkcþk�mx2Þ2�k2

c

Þ, b ¼ k2kc

ðkcþk�mx2Þ2�k2
c

.

Applying the continuity conditions of deflection, slope,

bending moment, and shear force at the interface between

the left and the right subsections of the beam in the (j–1)th

cell, we have

Wr
j�1 j2d � dð Þ ¼ Wl

j�1 j2d � dð Þ

@Wr
j�1 j2d � dð Þ

@x
¼
@Wl

j�1 j2d � dð Þ
@x

EI
@2Wr

j�1 j2d � dð Þ
@x2

¼ EI
@2Wl

j�1 j2d � dð Þ
@x2

EI
@3Wr

j�1 j2d � dð Þ
@x3

þ Fr
j�1 ¼ EI

@3Wl
j�1 j2d � dð Þ
@x3

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(7)

Substituting Eqs. (3) and (6) into Eq. (7), we can express the

continuity conditions in the matrix form as

Kwr
j�1 ¼ Hwl

j�1; (8)

where

K ¼

1 0 1 0

0 1 0 1

�1 0 1 0
a

b3EI
�1

a

b3EI
1

2
6666664

3
7777775; H ¼

cos bdð Þ sin bdð Þ cosh bdð Þ sinh bdð Þ
�sin bdð Þ cos bdð Þ sinh bdð Þ cosh bdð Þ
�cos bdð Þ �sin bdð Þ cosh bdð Þ sinh bdð Þ

sin bdð Þ þ b

b3EI

� �
�cos bdð Þ sinh bdð Þ þ b

b3EI

� �
cosh bdð Þ

2
66666664

3
77777775
;

wr
j�1 ¼ Ar

j�1 Br
j�1 Cr

j�1 Dr
j�1

� 	T
; wl

j�1 ¼ Al
j�1 Bl

j�1 Cl
j�1 Dl

j�1

h iT
:

Similarly, applying the continuity conditions of deflec-

tion, slope, bending moment, and shear force at the interface

between the (j–1)th cell and the jth cell, we have

Wl
j j2dð Þ ¼ Wr

j�1 j2dð Þ
@Wl

j j2dð Þ
@x

¼
@Wr

j�1 j2dð Þ
@x

EI
@2Wl

j j2dð Þ
@x2

¼ EI
@2Wr

j�1 j2dð Þ
@x2

EI
@3Wl

j j2dð Þ
@x3

þ Fl
j ¼ EI

@3Wr
j�1 j2dð Þ
@x3

:

8>>>>>>>>>>><
>>>>>>>>>>>:

(9)

Substituting Eqs. (3) and (6) into Eq. (9), we can express the

continuity conditions in the matrix form as

Awl
j þ Bwr

j ¼ H0wr
j�1; (10)

where

A ¼

1 0 1 0

0 1 0 1

�1 0 1 0
a

b3EI
�1

a

b3EI
1

2
666664

3
777775;

FIG. 3. Infinite long model of the internally coupled metamaterial beam.
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B ¼

0 0 0 0

0 0 0 0

0 0 0 0

� b

b3EI
0 � b

b3EI
0

2
6666664

3
7777775;

H0 ¼

cos bdð Þ sin bdð Þ cosh bdð Þ sinh bdð Þ
�sin bdð Þ cos bdð Þ sinh bdð Þ cosh bdð Þ
�cos bdð Þ �sin bdð Þ cosh bdð Þ sinh bdð Þ

sin bdð Þ �cos bdð Þ sinh bdð Þ cosh bdð Þ

2
66664

3
77775;

wl
j ¼ Al

j Bl
j Cl

j Dl
j

h i
;

wr
j�1 ¼ Ar

j�1 Br
j�1 Cr

j�1 Dr
j�1

� 	
:

Combining Eqs. (8) and (10) and eliminating wr
j�1 and wr

j ,

we can obtain the transfer matrix between the two cells

wl
j ¼ Aþ BK�1Hð Þ�1

H0 Kð Þ�1
H|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

wl
j�1: (11)

According to the Bloch theorem, the periodicity condition

yields

wl
j ¼ eiq2dwl

j�1; (12)

where q is the wavenumber. Inserting Eq. (11) into Eq. (12),

a standard eigenvalue problem is formed

jT� eiq2dIj ¼ 0; (13)

where I is the 4-order unit matrix.

For the given system parameters listed in Table I, Fig. 4

shows the band structures of the modified metamaterial

beam for different values of the coupling spring stiffness.

It can be noted that in the modified metamaterial beam,

two band gaps appear due to the existence of the internal

coupling. For Figs. 4(a)–4(d), the first band gap ranges

are (88.1–121.9 Hz), (88.1–121.9 Hz), (88.1–121.9 Hz), and

(88.1–121.9 Hz), respectively. The second ban gap ranges

are (143.9–145.3 Hz), (154.7–156.5 Hz), (164.8–166.4 Hz),

and (174.3–176.2 Hz), respectively. Comparing Figs. 4(a)

and 2(a), the first band gap (the purple shaded area) almost

coincides with that of the conventional metamaterial beam.

An additional second narrow band gap (the red shaded area)

appears in a slight higher frequency range. In addition, com-

paring Figs. 4(a)–4(d), it is found that with the increase of

the coupling spring stiffness kc, the first band gap is unaf-

fected. The location of the second band gap moves toward a

higher frequency and the width of the second band gap

varies. However, since the second band gap is very narrow

as compared to the first band gap, no matter how its width

increases or decreases, its variation is not noticeable.

2. Transmittance

This section investigates a more practical finite long

model with a certain energy dissipation mechanism of the

proposed internally coupled metamaterial beam as shown in

Fig. 5. The host plain beam is of length L. 2S resonators are

periodically placed onto the host beam at a uniform distance

of d. The left-hand side of the beam is clamped on a base

that experiences a harmonic excitation wbðtÞ ¼ Wbeixt. The

acceleration of the base excitation is controlled at a constant

acceleration acc ¼ �x2Wb. By adopting the Euler-Bernoulli

beam theory, the governing equation of the metamaterial

beam is written as

EI
@4wrel x; tð Þ

@x4
þ csI

@5wrel x; tð Þ
@x4@t

þ qAcs
@2wrel x; tð Þ

@t2

¼ qAcsacceixt �
XS

j¼1

Fl
jd x� xl

j

� �
þ Fr

j d x� xr
j

� �h i
eixt;

(14)

where wrelðx; tÞ is the relative transverse displacement

between the beam wðx; tÞ and the base wbðtÞ, i.e., wrelðx; tÞ
¼ wðx; tÞ � wbðtÞ; cs is the equivalent strain rate damping

FIG. 4. Band structure of the internally coupled metamaterial beam: (a) kc¼0.8k; (b) kc¼1.0k; (c) kc¼1.2k; and (d) kc¼1.4k.
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constant; Fl
j and Fr

j are the total reaction forces exerted by the left and right oscillators in the jth cell onto the beam during

vibration, respectively; and dðxÞ is the Dirac delta function. The equations of motion for oscillators are

m€ul
j tð Þ þ c _ul

j tð Þ þ kul
j tð Þ þ kc ul

j tð Þ þ w xl
j; t

� �
� ur

j tð Þ � w xr
j ; t

� �� �
¼ �m €w xl

j; t
� �

m€ur
j tð Þ þ c _ur

j tð Þ þ kur
j tð Þ þ kc ur

j tð Þ þ w xr
j ; t

� �� ul
j tð Þ � w xl

j; t
� �� �

¼ �m €w xr
j ; t

� �
;

8><
>: (15)

where ul
jðtÞ and ur

j ðtÞ are the displacements of the left and right oscillator masses in the jth cell relative to the host beam,

respectively. The absolute displacement of the oscillator mass should add wðxj; tÞ.
Using the modal superposition method, the relative displacement along the beam can be written as

wrel x; tð Þ ¼
X1
k¼1

/k xð Þgk tð Þ k ¼ 1; 2; 3…ð Þ; (16)

where functions /kðxÞ are the normalized mode shape functions of the plain beam (i.e., without oscillators) and functions gkðtÞ
are the modal coordinates. Substituting Eq. (16) into (14), multiplying by /nðxÞ, and integrating over the beam length from 0

to L, then using the orthogonal conditions (
Ð L

0
qAcs/rðxÞ/jðxÞdx ¼ drj,

Ð L
0

EI d4/rðxÞ
dx4 /jðxÞdx ¼ x2

r drj), we obtain the modal gov-

erning equation as

€gn tð Þ þ 2fnxn _gn tð Þ þ x2
ngn tð Þ ¼ qAcsacceixt

ðL

0

/n xð Þdx�
XS

j¼1

Fl
j/n xl

j

� �
eixt þ Fr

j /n xr
j

� �
eixt

h i
; (17)

where fn ¼ csIxn

2E . The expression of gnðtÞ can be derived from Eq. (17). Substituting the derived gnðtÞ into Eq. (16) provides

the closed-form solution of the relative displacement as

wrel x; tð Þ ¼
X1
k¼1

/k xð Þ
qAcsacc

ðL

0

/k xð Þdx�
XS

j¼1

Fl
j/k xl

j

� �
þ Fr

j /k xr
j

� �h i
x2

k � x2 þ 2ifkxkx
eixt: (18)

From Eq. (15), we can obtain

ul
j tð Þ ¼ a1wrel xl

j

� �
þ a2wrel xr

j

� �þ a3wb tð Þ

ur
j tð Þ ¼ a2wrel xl

j

� �
þ a1wrel xr

j

� �þ a3wb tð Þ;

8><
>: (19)

where

a1 ¼
k2

c � kc � mx2ð Þ k þ kc � mx2 þ ixcð Þ
� 	

k þ kc � mx2 þ ixcð Þ2 � k2
c

a2 ¼
kc k þ ixcð Þ

k þ kc � mx2 þ ixcð Þ2 � k2
c

a3 ¼
k2

c � kc � mx2ð Þ k þ kc � mx2 þ ixcð Þ
� 	

þ kc k þ ixcð Þ
k þ kc � mx2 þ ixcð Þ2 � k2

c

:

8>>>>>>>>>><
>>>>>>>>>>:

FIG. 5. Finite long model of the internally coupled metamaterial beam.
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The reaction forces exerted by the left and right oscillators in the jth cell onto the beam are expressed as

f l
j ¼ � c _ul

j tð Þ þ kul
j tð Þ

h i
¼ � k þ ixcð Þa1wrel xl

j

� �
þ a2wrel xr

j

� �þ a3wb tð Þ

f r
j ¼ � c _ur

j tð Þ þ kur
j tð Þ

h i
¼ � k þ ixcð Þa2wrel xl

j

� �
þ a1wrel xr

j

� �þ a3wb tð Þ:

8><
>: (20)

Substituting Eq. (18) into Eq. (20) gives the expression of the force amplitude as

Fl
j ¼ � k þ ixcð Þ

a1 �
X1
k¼1

/k xl
j

� � qAcsacc

ðL

0

/k xð Þdx�
XS

h¼1

Fl
h/k xl

h

� �
þ Fr

h/k xr
h

� �h i
x2

k � x2 þ 2ifkxkx

þa2 �
X1
k¼1

/k xr
j

� �qAcsacc

ðL

0

/k xð Þdx�
XS

h¼1

Fl
h/k xl

h

� �
þ Fr

h/k xr
h

� �h i
x2

k � x2 þ 2ifkxkx
þ a3

acc

x2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

Fr
j ¼ � k þ ixcð Þ

a2 �
X1
k¼1

/k xl
j

� � qAcsacc

ðL

0

/k xð Þdx�
XS

h¼1

Fl
h/k xl

h

� �
þ Fr

h/k xr
h

� �h i
x2

k � x2 þ 2ifkxkx

þa1 �
X1
k¼1

/k xr
j

� � qAcsacc

ðL

0

/k xð Þdx�
XS

h¼1

Fl
h/k xl

h

� �
þ Fr

h/k xr
h

� �h i
x2

k � x2 þ 2ifkxkx
þ a3

acc

x2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(21)

Rearrange the 2S reaction force equations, i.e., Fl
1, Fl

2,…, Fl
S, Fr

1, Fr
2…,Fr

S

a1;1Fl
1 þ a1;2Fl

2 þ � � � þ a1;SFl
S þ a1;Sþ1Fr

1 þ a1;Sþ2Fr
2 þ � � � þ a1;2SFr

S ¼ b1

…

aj;1Fl
1 þ aj;2Fl

2 þ � � � þ aj;SFl
S þ aj;Sþ1Fr

1 þ aj;Sþ2Fr
2 þ � � � þ aj;2SFr

S ¼ bj

…

aS;1Fl
1 þ aS;2Fl

2 þ � � � þ aS;SFl
S þ aS;Sþ1Fr

1 þ aS;Sþ2Fr
2 þ � � � þ aS;2SFr

S ¼ bS

aSþ1;1Fl
1 þ aSþ1;2Fl

2 þ � � � þ aSþ1;SFl
S þ aSþ1;Sþ1Fr

1 þ aSþ1;Sþ2Fr
2 þ � � � þ aSþ1;2SFr

S ¼ bSþ1

…

aSþj;1Fl
1 þ aSþj;2Fl

2 þ � � � þ aSþj;SFl
S þ aSþj;Sþ1Fr

1 þ aSþj;Sþ2Fr
2 þ � � � þ aSþj;2SFr

S ¼ bSþj

…

a2S;1Fl
1 þ a2S;2Fl

2 þ � � � þ a2S;SFl
S þ a2S;Sþ1Fr

1 þ a2S;Sþ2Fr
2 þ � � � þ a2S;2SFr

S ¼ b2S;

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(22)

where

aj;h ¼

a1 �
X1
k¼1

/k xl
j

� �
/k xl

h

� �
x2

k � x2 þ 2ifkxkx
þ a2 �

X1
k¼1

/k xr
j

� �
/k xl

h

� �
x2

k � x2 þ 2ifkxkx

0
@

1
A for 1 � j � S; 1 � h � S

a1 �
X1
k¼1

/k xl
j

� �
/k xr

h�Sð Þ
� �

x2
k � x2 þ 2ifkxkx

þ a2 �
X1
k¼1

/k xr
j

� �
/k xr

h�Sð Þ
� �

x2
k � x2 þ 2ifkxkx

0
@

1
A for 1 � j � S; Sþ 1 � h � 2S

a2 �
X1
k¼1

/k xl
j�Sð Þ

� �
/k xl

h

� �
x2

k � x2 þ 2ifkxkx
þ a1 �

X1
k¼1

/k xr
j�Sð Þ

� �
/k xl

h

� �
x2

k � x2 þ 2ifkxkx

0
@

1
A for Sþ 1 � j � 2S; 1 � h � S

a2 �
X1
k¼1

/k xl
j�Sð Þ

� �
/k xr

h�Sð Þ
� �

x2
k � x2 þ 2ifkxkx

þ a1 �
X1
k¼1

/k xr
j�Sð Þ

� �
/k xr

h�Sð Þ
� �

x2
k � x2 þ 2ifkxkx

0
@

1
A for Sþ 1 � j � 2S; Sþ 1 � h � 2S;

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:
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aj;j ¼

a1 �
X1
k¼1

/k xl
j

� �
/k xl

j

� �
x2

k �x2 þ 2ifkxkx
þ a2 �

X1
k¼1

/k xr
j

� �
/k xl

j

� �
x2

k �x2 þ 2ifkxkx
� 1

kþ ixcð Þ

0
@

1
A for 1 � j � S

a2 �
X1
k¼1

/k xl
j�Sð Þ

� �
/k xr

j�Sð Þ
� �

x2
k �x2 þ 2ifkxkx

þ a1 �
X1
k¼1

/k xr
j�Sð Þ

� �
/k xr

j�Sð Þ
� �

x2
k �x2 þ 2ifkxkx

� 1

kþ ixcð Þ

0
@

1
A for Sþ 1 � j � 2S;

8>>>>>>>><
>>>>>>>>:

bj ¼

a1 �
X1
k¼1

/k xl
j

� � qAcsacc

ðL

0

/k xð Þdx

x2
k �x2 þ 2ifkxkx

þ a2 �
X1
k¼1

/k xr
j

� � qAcsacc

ðL

0

/k xð Þdx

x2
k �x2 þ 2ifkxkx

þ a3

acc

x2

0
B@

1
CA

for 1 � j � S

a2 �
X1
k¼1

/k xl
j�Sð Þ

� � qAcsacc

ðL

0

/k xð Þdx

x2
k �x2 þ 2ifkxkx

þ a1 �
X1
k¼1

/k xr
j�Sð Þ

� � qAcsacc

ðL

0

/k xð Þdx

x2
k �x2 þ 2ifkxkx

þ a3

acc

x2

0
B@

1
CA

for Sþ 1 � j � 2S:

8>>>>>>>>>><
>>>>>>>>>>:

By solving Eq. (22), the 2S values of Fl
j and Fr

j can be

calculated. Substituting them back into Eq. (18), the relative

deflection amplitude WrelðxÞ can be obtained. The transmit-

tance of the system is defined and calculated as

s ¼ jWrel Lð Þ þWbj
jWbj

: (23)

With the parameters listed in Table I, the transmittances

of the modified metamaterial beam are calculated for differ-

ent values of the coupling spring stiffness, as shown in

Fig. 6. It is worth noting that the model is now assumed to be

finite long, and the supplementary information used in the

calculation includes—material damping ratio 0.009; oscilla-

tor damping ratio 0.009; and beam length 0.45 m (thus there

are 6 local resonators attached onto the beam). The colour

shaded areas are band gaps predicted by the band structure

from Sec. II B 1 (Fig. 4) and are replotted in Fig. 6. As pre-

dicted in the band structure, the modified metamaterial beam

inherits the band gap of the conventional one and provides

an additional second band gap in a higher frequency range.

Figure 6 clearly shows that both the band structure and the

transmittance well predict the existence and the range of

band gaps and they are in good agreement with each other.

C. Energy harvesting of the modified metamaterial
beam

Hu et al.24 integrated local resonators with piezoelectric

elements and proposed a metamaterial based energy harvester

which was modelled with lumped parameters. However, in

reality, lumped parameter models sometimes cannot well pre-

dict the behaviour of physically distributed parameter sys-

tems. Naturally, this concept can be easily extended by using

distributed parameter modelling which yields a metamaterial

beam based piezoelectric energy harvester (PEH).31 In addi-

tion, we modify the piezoelectric metamaterial beam by intro-

ducing the internal coupling of local resonators. In this

section, the energy harvesting performance of this modified

beam is analytically studied and compared with that of the

conventional piezoelectric metamaterial beam in Ref. 31.

The governing equation of the circuit part is

v

R
þ CS _v � h _u ¼ 0; (24)

where h is the electromechanical coupling coefficient; CS is

the clamped capacitance of the piezoelectric element; R is

the resistance of the electric resistor connected to the piezo-

electric element; v is the voltage across the electric resistor

FIG. 6. Transmittance of the internally coupled metamaterial beam: (a) kc¼0.8k; (b) kc¼1.0k; (c) kc¼1.2k; and (d) kc¼1.4k.
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R; and u is the relative displacement of the local resonator

mass to the beam.

Applying the Laplace transform, we can represent the

voltage amplitude by using the amplitude of u

jVj ¼ ihxU
1

R
þ ixCS

�������
�������: (25)

From Eq. (25), by finding the limit of jVj as R
approaches positive infinity, the open-circuit voltage ampli-

tude can be expressed as

jVocj ¼
hU

CS

����
����: (26)

It can be shown that the open-circuit voltage amplitude

is linearly proportional to the relative displacement ampli-

tude Y of the local resonator mass, i.e., jVocj / jUj. In the

following study of energy harvesting performance, the same

system previously used with parameters listed in Table I for

calculating the transmittances is re-used. The internal cou-

pling spring stiffness is kc¼ 13 824 N/m. The electromechan-

ical coupling coefficient h and the clamped capacitance CS

are 1.45� 10�3 N/V and 18 nF, respectively. In addition, for

consistent comparison, it is assumed that the same piezoelec-

tric elements are used in both the conventional and modified

metamaterial beam PEHs.

The base excitation is kept at a constant acceleration

acc¼�1 m/s2. Figures 7(a) and 7(b) show the open circuit

voltage responses from the piezoelectric elements in the con-

ventional and the modified metamaterial beam, respectively.

It should be noted that the amplitude of the first peak in jVocj
response of the modified metamaterial beam is larger than

that of the conventional one for about an order of magnitude.

Figures 7(c) and 7(d) show the first peak responses in Figs.

7(a) and 7(b) with a higher frequency resolution. In the con-

ventional metamaterial beam, the piezoelectric element

attached to the 6th local resonator (at the tip of the metama-

terial beam) exhibits the largest jVocj equal to 30.7 V at

10.95 Hz. This can be easily explained by the mechanism of

the dynamic amplifier.33 The host beam serves as a dynamic

amplifier for those local resonators. Naturally, the tip of the

host beam undergoes the most violent motion; thus the local

resonator at the utmost tip of the beam gains the largest

dynamic amplification. However, after introducing internal

coupling, the system’s behaviour changes. The 5th local res-

onator experiences the most significant dynamic amplifica-

tion at 14.06 Hz and provides a maximum jVocj equal to

137.6 V. According to Eq. (26), it can be quantitatively

FIG. 7. Open circuit voltage responses of piezoelectric elements embedded in: (a) conventional metamaterial beam and (b) internally coupled metamaterial beam;

open circuit voltage responses around first resonance with a higher resolution: (c) conventional metamaterial beam and (d) internally coupled metamaterial beam.
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estimated that the maximum jVocj of the modified metamate-

rial beam PEH is about 4.5 times that of the conventional

one. Therefore, in terms of energy harvesting, the introduc-

tion of the internal coupling can significantly enhance the

energy harvesting performance.

III. FINITE ELEMENT ANALYSIS

A. Conventional piezoelectric metamaterial beam

Finite element models were developed using the com-

mercial software ANSYS to investigate the performance of

the modified metamaterial beam based PEH. The conven-

tional metamaterial beam based PEH was also modelled

[Fig. 8(a)] and analysed for comparison. In the finite element

model, each lumped local resonator was modelled by a pair

of cantilevers with tip masses. Hereinafter, they are referred

to as the parasitic beams. They were symmetrically placed at

both sides of the host beam. This aims to avoid torsional

motion of the host beam caused by imbalance. The six pairs

of parasitic beams from the clamped end to the free end are

numbered successively as the 1st oscillator to the 6th oscilla-

tor. The dynamic behaviour around the fundamental reso-

nance of a cantilever beam with a tip mass can be

approximated by a single-degree-of-freedom (DOF) mass-

spring oscillator.

The piezoelectric element was bonded onto the parasitic

beam. A three-dimensional (3D) 20-node structural solid ele-

ment (SOLID186 in ANSYS) was used for the beams and tip

masses and a 3D 20-node coupled-field solid element

(SOLID226 in ANSYS) was used for the piezoelectric ele-

ment. Figure 8(b) shows the finite element implementation

of the electrode connection of the piezoelectric element

bonded onto the parasitic beam. The voltage degrees of free-

dom (DOFs) on the top and bottom surfaces were coupled to

provide uniform electrical potentials and thus to emulate the

electrodes. Then, the two electrodes were connected to the

resistor by coupling the voltage DOFs of the electrodes

and the two nodes of the resistor element. An acceleration

field (acc ¼�1 m/s2) was applied to the system. A harmonic

analysis was performed to obtain steady-state displacement

and voltage outputs. It is worth noting that the deflection

obtained by applying an acceleration field is the displace-

ment relative to the base. The absolute deflection at the tip of

the beam and thus the transmittance is calculated as

s ¼
Wrel Lð Þ � acc

x2

��� ���
acc

x2

��� ��� : (27)

Figure 9(a) shows the transmittance of the conventional

metamaterial beam using the finite element method. The

band gap is estimated to be (85.9–121.7 Hz) from the FE

obtained transmittance. The geometry and material parame-

ters used in the analysis are listed in Table II. It is worth not-

ing that the first natural frequency of the parasitic beam with

a tip mass is tuned close to 90 Hz, which is the natural fre-

quency of the local resonator in the spring-mass lumped

parameter model. In addition, it is noted that the analytical

transmittance curve matches well with the FEA one before

the band gap but deviates significantly after the band gap. It

has been checked that using 6 modes in the analytical calcu-

lation is sufficient to guarantee the convergence, as shown in

Fig. 9(b). This deviation comes from the increasing differ-

ence between the behaviours of the lumped model and the

cantilever with the tip mass model for the local resonator

when the frequency increases beyond 100 Hz.

Figure 10(a) shows the open circuit voltage responses of

the piezoelectric element bonded onto those 6 parasitic

beams over the whole frequency range. From Fig. 10(a), we

can identify that the first peak has the largest amplitude

(with a low frequency resolution). With a higher frequency

resolution, Fig. 10(b) shows the open circuit voltage

responses around the first peak. It can be found that the max-

imum open circuit voltage amplitude is 20.54 V at 11 Hz.

Figure 10(c) shows the steady state open circuit voltage con-

tour at the first peak. The contour plot shows that the piezo-

electric element embedded with the parasitic beam at the

utmost tip of the host beam generates the largest open-circuit

FIG. 8. (a) Finite element model of the conventional metamaterial beam embedded with piezoelectric elements and (b) implementation of electrode connection

of the piezoelectric element.
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voltage. Moreover, the closer the parasitic beam is to the

fixed (clamping) end of the host beam, the lower the gener-

ated voltage is. The voltage generated by the piezoelectric

element on the parasitic beam near the root of the host beam

is quite small for practical use.

B. Modified piezoelectric metamaterial beam—Model A

In this section, a finite element model, termed Model

A (Fig. 11), of the modified metamaterial beam, is developed

to validate the theoretical studies presented in Sec. II.

In Model A, one-dimensional 2-node spring elements

(COMBIN14) were used to realize the alternate coupling of

local resonators with a spring stiffness of 6912 N/m. It is

worth noting that the coupling spring stiffness here is half of

that in the analytical model (kc¼ 13 824 N/m in Sec. II C)

because each oscillator in the analytical model is equivalent

to a pair of cantilever beams. The two vertical DOFs of the

spring were coupled with the vertical DOFs of the centres of

the left- and right-hand-side parasitic beam tip masses,

respectively. Other boundary conditions are the same as used

in the conventional model.

1. Vibration suppression of Model A

Figure 12(a) shows the transmittance predicted by Model

A. It can be observed that the first band gap (87.4–121.6 Hz)

is almost the same as that of the conventional one. An addi-

tional bang gap (152.6–158.3 Hz) appears to exist although it

is relatively narrow compared with the first one. Figure 12(b)

compares the results from FE Model A and the analytical pre-

dictions in Sec. II. It is noted that their predictions of band

gaps are qualitatively in good agreement. However, though

the parameters of the parasitic beam and the coupling spring

are carefully selected to make Model A behave as closely as

possible to the analytical model with the lumped resonator

mass (Fig. 5), the results are not completely consistent. This

is because the parasitic beams can cause torsional motion

though this effect was minimized by symmetrically attaching

parasitic beams onto the host beam.

To further explore the phenomenon of the second band

gap in the internally coupled metamaterial beam, Fig. 13

shows the steady state vibration amplitude of the conven-

tional metamaterial beam and the modified metamaterial

beam (Model A) at 156.22 Hz (which is within the second

FIG. 9. (a) Comparison of transmittance of the conventional metamaterial beam by finite element analysis and theory and (b) transmittances calculated by

using 6 modes and 12 modes.

TABLE II. Physical and geometric properties used in the FE model.

Geometry parameters Material parameters

Host beam length 0.45 m Host beam material density 7860 kg/m3

Host beam width 0.020 m Host beam Young’s modulus 200� 109 Pa

Host beam thickness 0.004 m Parasitic beam material density 2700 kg/m3

Parasitic beam length 0.0282 m Parasitic beam Young’s modulus 69.5� 109 Pa

Parasitic beam width 0.0078 m Tip mass material density 7860 kg/m3

Parasitic beam thickness 0.0012 m Tip mass Young’s modulus 200� 109 Pa

Tip mass length 0.0136 m Piezoelectric material density 5440 kg/m3

Tip mass width 0.0136 m Piezoelectric material Young’s modulus 30.336� 109 Pa

Tip mass thickness 0.0136 m Strain coefficient of the piezoelectric layer -170 pC/N

Piezoelectric layer length 0.022 m Permittivity component at constant strain 1.3281� 10�8 F/m

Piezoelectric layer width 0.0062 m Global damping ratio 0.009

Piezoelectric layer thickness 0.0002 m
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band gap of Model A). As compared to the conventional

metamaterial beam, the vibration of Model A is suppressed

significantly. The vibration energy of the host beam decays

with an increase in the distance from the clamping end. It is

worth noting that the resonant frequency of the parasitic

beam is around 90 Hz, and the vibration suppression phe-

nomenon at 156.22 Hz is due to the existence of the coupling

spring.

2. Energy harvesting of Model A

The open circuit voltage responses over the whole fre-

quency range of the piezoelectric elements bonded onto

those 6 pairs of parasitic beams of Model A are demonstrated

in Fig. 14(a). It is noted that around the first resonant fre-

quency, these piezoelectric elements provide the largest

open circuit voltages. Similarly, with a high frequency reso-

lution, Fig. 14(b) shows the responses around the first peak

with higher resolution. It can be found that the maximum

voltage amplitude of 80.08 V is achieved at a frequency of

14.12 Hz which represents a 290% increase as compared to

that of the conventional metamaterial beam PEH [Fig.

10(b)]. This indicates that the energy harvesting performance

of Model A is much improved due to the existence of the

internal coupling.

The steady state open circuit voltage contour at

14.12 Hz is demonstrated in Fig. 14(c). It is noted that the

electrical potential distribution is different from that of the

conventional metamaterial beam PEH. Due to the existence

of the internal coupling, the piezoelectric element at the

utmost tip no longer provides the largest voltage output. The

5th parasitic beam seems to be the most efficient one.

Overall, all the piezoelectric elements’ voltage outputs [Fig.

14(b)] have been significantly enhanced as compared to

those of the conventional metamaterial beam PEH [Fig.

10(b)]. Therefore, from the perspective of energy harvesting,

the introduction of the internal coupling is favourable. This

is also consistent with what was concluded in the analytical

study.

FIG. 10. Open circuit voltage responses of piezoelectric elements embedded in the conventional metamaterial beam: (a) over the spectrum of 0–200 Hz; (b)

around the first resonance with a higher resolution; and (c) open circuit voltage contour at 11 Hz.
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C. Modified piezoelectric metamaterial beam—Model
B

Considering that the internal coupling between local res-

onators of Model A is not easy to achieve in reality, an alter-

native finite element model B (Model B) that is more

practical in respect of the implementation of the internal cou-

pling is established (Fig. 15). In this model, the internal cou-

pling spring is replaced by a thin beam, which connects the

tip masses of the left- and right-hand-side parasitic beams.

The material properties of the connection beam are the same

as those of the host beam. The geometry parameters are as

follows: width is 0.008 m, thickness is 0.001 m, and length

which is equal to 0.0614 m is determined by other dimension

parameters of the metamaterial beam. The connection beam

is roughly considered as a guided beam.34 Theoretically, the

effective stiffness of such kind of beam is 6912 N/m. It can

FIG. 12. (a) Comparison of transmittances of the internally coupled metamaterial beam (Model A) and the conventional metamaterial beam from finite element

analysis and (b) comparison of FE Model A with the analytical results.

FIG. 13. Steady state vibration amplitude contours of (a) conventional metamaterial beam and (b) internally coupled metamaterial beam—Model A at

156.22 Hz.

FIG. 11. Finite element model A of the internally coupled metamaterial

beam embedded with piezoelectric elements.
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be noted that these parameters are carefully selected to make

the beam connection roughly comparable with the spring

connection in Model A. The excitation and other boundary

conditions remain the same as those in Model A.

1. Vibration suppression of Model B

Figure 16 shows the transmittance predicted by Model

B. Like Model A, the width of the first band gap

(83.3–115.8 Hz) has a minor difference as compared to

the conventional metamaterial beam (85.9–121.7 H),

but the band gap moves towards low frequency slightly.

There also appears an additional second bang gap

(125.6–156.2 Hz). However, the behaviour of the second

band gap is quite different from that of both Model A

and the analytical study [Fig. 12(b)]. The width of the sec-

ond band gap is much larger than the analytical prediction

and becomes comparable to the width of the first band

gap.

To further investigate the vibration behaviour of the sys-

tem in the second band gap, Fig. 17 presents the steady state

vibration amplitude contours of the conventional metamate-

rial beam (FE model), Model A and Model B at 142.29 Hz

(within the 2nd band gap of Model B). It is to be noted that

the vibration of Model B is significantly suppressed. The

vibration energy decays rapidly along the length of the host

beam.

FIG. 14. Open circuit voltage responses of the piezoelectric elements embedded in the internally coupled metamaterial beam—Model A: (a) over spectrum of

0–200 Hz, (b) around first resonance with a higher resolution, and (c) open circuit voltage contour at 14.12 Hz.

FIG. 15. Finite element model B of the internally coupled metamaterial

beam embedded with piezoelectric elements.
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2. Energy harvesting of Model B

The open circuit voltage frequency responses of the pie-

zoelectric elements bonded onto those 6 pairs of parasitic

beams of Model B are shown in Fig. 18(a). Around the first

resonant frequency, these piezoelectric elements provide the

largest open-circuit voltages, as expected. Figure 18(b)

shows the responses around the first peak with a higher fre-

quency resolution. The corresponding steady state open cir-

cuit voltage contour plot is shown in Fig. 18(c).

In contrast to Model A, the enhancement in the voltage

output observed in Model B is not obvious, and the maxi-

mum voltage amplitude of Model B is even slightly

decreased to 20.50 V as compared to that of the conventional

one [Fig. 10(b)]. Although the voltage output of the 6th pie-

zoelectric element remains almost unchanged, the voltage

output of the 5th one is enhanced from 15.68 to 19.05 V, pro-

viding a similar energy harvesting ability as that of the 6th

element [Fig. 18(b)]. This is because near the first resonant

frequency, motions of all parasitic beams are almost in phase

(but not completely because of damping). The introduction

of connection beams forced the neighbouring two coupled

parasitic beams to behave the same. Overall, the energy har-

vesting performance of Model B is improved as compared to

that of the conventional metamaterial beam PEH.

IV. CONCLUSIONS

This paper has proposed and investigated an internally

coupled metamaterial beam embedded with piezoelectric

FIG. 16. Comparison of transmittances of the internally coupled metamate-

rial beam (Models A & B) and the conventional metamaterial beam from

finite element analysis.

FIG. 17. Steady state vibration amplitude contours of (a) conventional metamaterial beam, (b) internally coupled metamaterial beam—Model A, and (c) inter-

nally coupled metamaterial beam—Model B at 142.29 Hz.
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elements for simultaneous vibration suppression and energy

harvesting. Both the band structure of an infinite long

model and the transmittance of a finite long model have

been analysed. This demonstrated the occurrence of an

additional band gap due to the existence of the internal cou-

pling. The theoretical study also shows that not only the

vibration suppression ability can be slightly enhanced, but

also the energy harvesting performance can be significantly

improved by using the modified metamaterial beam, as

compared to the conventional one without internal cou-

pling.31 In addition to the analytical models, a finite ele-

ment model (Model A), which is equivalent to the

analytical model in respect of the internal coupling, is

developed. The FE results are in good agreement with the

analytical model and confirm both the vibration suppression

and energy harvesting performance improvement of the

proposed internally coupled metamaterial beam PEH.

Another finite element model (Model B), which incorpo-

rates more practical implementation, is also established in

which the internal coupling is realized by a thin beam con-

nection rather than an ideal spring connection. It is found

that although the internal coupling using such a beam con-

nection does not provide much improvement in energy har-

vesting as compared to the conventional metamaterial beam

PEH, the vibration suppression ability is greatly improved

with a much wider second band gap than that obtained from

Model A. The analytical models and the finite element

models developed in the work provide useful tools to

design internally coupled piezoelectric metamaterial beams

for concurrent efficient energy harvesting and vibration

suppression.
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FIG. 18. Open circuit voltage responses of embedded piezoelectric elements in the internally coupled metamaterial beam—Model B: (a) over spectrum of

0–200 Hz, (b) around first resonance with a higher resolution, and (c) open circuit voltage contour at 10.76 Hz.
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